# metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# [5-Bromo-*N*-(2-carboxylatophenyl)salicylideniminato]dimethyltin(IV)

# Georgina M. Rosair,<sup>a</sup>\* Dilip Kumar Dey,<sup>b</sup> Brajagopal Samanta<sup>c</sup> and Samiran Mitra<sup>c</sup>

<sup>a</sup>Department of Chemistry, Heriot–Watt University, Edinburgh EH14 4AS, Scotland, <sup>b</sup>Department of Chemistry, Chandidas Mahavidyalaya, Khujutipara 731 215, District Birbhum, West Bengal, India, and <sup>c</sup>Department of Chemistry, Jadavpur University, Kolkata 700 032, India

Correspondence e-mail: g.m.rosair@hw.ac.uk

Received 24 January 2002 Accepted 21 February 2002 Online 29 March 2002

The structure of the title dimethyltin(IV) complex, [2-(5-bromo-2-oxidobenzylideneamino)benzoato- $\kappa^3 O, N, O'$ ]dimethyltin(IV), [Sn(CH<sub>3</sub>)<sub>2</sub>(C<sub>14</sub>H<sub>8</sub>BrNO<sub>3</sub>)], features centrosymmetric dimers disposed about a central Sn<sub>2</sub>O<sub>2</sub> core. Each Sn centre has seven-coordinate pentagonal-bipyramidal geometry, taking into account two moderately long Sn-O contacts about an inversion centre [2.679 (4) and 2.981 (4) Å]. The methyl groups are in an axial orientation.

## Comment

Studies on the coordination chemistry of amino-acid-based Schiff bases with diorganotin(IV) centres show that the Sn coordination number is readily expanded (Pellerito & Nagy, 2002). Several compounds, such as the title compound, (I), form dimeric structures with an Sn<sub>2</sub>O<sub>2</sub> core (Dey, Saha, Gielen *et al.*, 1999; Huber *et al.*, 1989; Gielen *et al.*, 1998). There is a short intermolecular distance between atoms O2 and O2<sup>i</sup> in (I) [2.613 (6) Å; symmetry code: (i) -x, 2 - y, 2 - z], yet there is no evidence in the difference Fourier map of an H atom bound to O2 forming a hydrogen bond with O2<sup>i</sup>.



In (I), the central Sn atom adopts approximate pentagonalbipyramidal geometry, with the two methyl groups in the axial positions. The Sn environment is seven-coordinate, involving two long  $Sn \cdots O$  contacts of 2.679 (4) and 2.981 (4) Å

(Table 1). The deviation of Sn from the equatorial NO<sub>4</sub> coordination plane is 0.047 (2) Å (mean deviation 0.054 Å). The O-Sn-O angle in the Sn<sub>2</sub>O<sub>2</sub> core is 63.80 (15)° in (I), close to the values in similar compounds of 64.9 (2) (Dey, Saha, Gielen *et al.*, 1999) and 65.6 (2)° (Gielen *et al.*, 1998).

In (I), the two longer  $Sn \cdots O$  distances are shorter than those in the unbrominated complex, (II) [2.69 (1) and 3.03 (1) Å; Dey, Saha, Gielen *et al.*, 1999], despite the data being measured at the same temperature. This difference in the bond lengths between the two compounds is reversed for the other Sn-N/O bonds in the equatorial coordination plane, where for the brominated compound, (I), the bond lengths are consistently longer [Sn1-O1 2.158 (3) *cf.* 2.135 (4) Å in (II), Sn1-O2 2.206 (4) *cf.* 2.187 (4) Å in (II), and Sn1-N1 2.251 (4) *cf.* 2.230 (5) Å in (II)].

The C-Sn-C angle of 156.9  $(3)^{\circ}$  is close to that found in (II) [155.1 (3)°; Dey, Saha, Gielen *et al.*, 1999], but rather small in comparison with the value found in the diorganotin pyridine-2-phosphonate-6-dicarboxylate [168.2 (3)°; Gielen et al., 1998]. The latter angle is closer to the ideal value of 180° found in regular pentagonal-bipyramidal structures, yet much larger than the ideal value of 120° for a regular trigonal-bipyramidal structure. The N-(2-hydroxyacetophenoneglycinate) organotin structures (Gielen et al., 1998) are much closer to the latter geometry  $[C-Sn-C \ 126.0 \ (2)-137.4 \ (3)^{\circ}]$ . Thus, the structure of (I) lies between a dimeric pentagonal-bipyramidal structure and a monomeric trigonal-bipyramidal structure, as is the case for (II) (Dey, Saha, Gielen et al., 1999). Other distortions from regular geometry are seen in the deviation from  $180^{\circ}$  of the O1-Sn1-O2 [157.21 (15)°] and  $C101 - Sn1 - C102 [156.9 (3)^{\circ}]$  angles, and from 90° of C101 -Sn1-N1 [101.2 (2)°], C102-Sn1-N1 [101.8 (2)°], O1-Sn1-N1 [80.70 (14)°] and O2-Sn1-N1 [76.81 (14)°]. The last two bite angles are comparable with other ONO-chelated organotin(IV) complexes (Smith et al., 1992; Dakternieks et al., 1998; Dey, Saha, Geilen et al., 1999). None of the aforementioned six-membered chelate rings is planar; their conformations are closest to a half chair.

The Sn1-O2(carboxyl) bond length [2.206 (4) Å] is longer than that for Sn1-O1 [2.158 (3) Å]. Such a difference in bond length has been found in similar complexes: 2.151 (8) and 2.078 (10) Å (Smith *et al.*, 1992), 2.188 (3) and 2.068 (4) Å (Khoo *et al.*, 1997), and 2.187 (4) and 2.135 (4) Å (Dey, Saha, Gielen *et al.*, 1999). These Sn-O distances are slightly longer in (I) than in the compounds described above.

The Sn1-N1 bond length of 2.251 (4) Å in (I) is comparable with the values observed for Ph<sub>2</sub>Sn(OC<sub>6</sub>H<sub>4</sub>-CH=NC<sub>6</sub>H<sub>4</sub>O) [2.241 (3) Å; Preut *et al.*, 1976] and [Vin<sub>2</sub>Sn{2-OC<sub>6</sub>H<sub>4</sub>C(CH<sub>3</sub>)=NCH<sub>2</sub>COO}OH<sub>2</sub>] [Vin is vinyl; 2.254 (4) Å; Dakternieks *et al.*, 1998]. However, this bond is longer in (I) than in other organotin(IV) complexes derived from *ONO*donor tridentate Schiff bases [2.158 (8) Å (Smith *et al.*, 1992) and 2.174 (6)-2.198 (5) Å (Dakternieks *et al.*, 1998)], and shorter than in the six-coordinate complexes  $R_2$ Sn(Vanophen) [*R* is Ph, "Bu or Me; Vanophen is *N*,*N'*-bis(3-methoxysalicylaldehyde)-1,2-phenylenediiminate; 2.266 (2)-2.280 (2) Å; Dey, Saha, Das *et al.*, 1999].



#### Figure 1

A perspective view of the dimer in (I), with displacement ellipsoids at the 50% probability level. H atoms are shown as small circles with an arbitrary radius of 0.2 Å [symmetry code: (i) -x, 2 - y, 2 - z].

The  $Sn-C_{methyl}$  bond lengths in (I) [2.098(6) and 2.100(5) Å] are very similar to those found in (II) [2.102(7)] and 2.103 (6) Å; Dey, Saha, Gielen et al., 1999] and in a related dimethyl species [2.091 (14) and 2.142 (14) A; Smith et al., 1992].

## **Experimental**

Compound (I) was prepared by the reaction of N-(2-carboxyphenyl)-5'-bromosalicylidenimine (1.5 g, 4.68 mmol) and  $Me_2SnCl_2$  (1.03 g, 4.68 mmol) in dry methanol (25 ml) at room temperature. Suitable single crystals of (I) were obtained overnight (yield: 1.75 g, 80%; m.p. > 517 K). Analysis found: C 40.88, H 3.08, N 2.95, Sn 25.01%; calculated for (I): C 41.16, H 3.02, N 3.0, Sn 25.42%; IR (KBr disc):  $\nu$ (COO) 1634 cm<sup>-1</sup>.

#### Crystal data

| $[Sn(CH_3)_2(C_{14}H_8BrNO_3)]$        | $D_x = 1.892 \text{ Mg m}^{-3}$           |
|----------------------------------------|-------------------------------------------|
| $M_r = 466.89$                         | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/n$                   | Cell parameters from 29                   |
| $a = 8.8719 (17) \text{\AA}$           | reflections                               |
| b = 12.0961 (17)  Å                    | $\theta = 5.2 - 12.5^{\circ}$             |
| c = 15.323 (4) Å                       | $\mu = 4.01 \text{ mm}^{-1}$              |
| $\beta = 94.702 (16)^{\circ}$          | T = 293 (2) K                             |
| V = 1638.9 (6) Å <sup>3</sup>          | Rectangular block, yellow                 |
| Z = 4                                  | $0.96 \times 0.56 \times 0.28 \text{ mm}$ |
| Data collection                        |                                           |
| Bruker P4 diffractometer               | $R_{\rm int} = 0.039$                     |
| $\omega$ scans                         | $\theta_{\rm max} = 25^{\circ}$           |
| Absorption correction: $\psi$ scan     | $h = -10 \rightarrow 1$                   |
| (North et al., 1968)                   | $k = -1 \rightarrow 14$                   |
| $T_{\min} = 0.081, T_{\max} = 0.326$   | $l = -18 \rightarrow 18$                  |
| 3818 measured reflections              | 3 standard reflections                    |
| 2875 independent reflections           | every 97 reflections                      |
| 2411 reflections with $I > 2\sigma(I)$ | intensity decay: none                     |

| Refinement |  |
|------------|--|
|            |  |

| Refinement on $F^2$             | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.042$ | $w = 1/[\sigma^2(F_o^2) + (0.0679P)^2]$                    |
| $wR(F^2) = 0.109$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.04                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 2875 reflections                | $\Delta \rho_{\rm max} = 1.55 \text{ e } \text{\AA}^{-3}$  |
| 199 parameters                  | $\Delta \rho_{\rm min} = -1.34 \text{ e } \text{\AA}^{-3}$ |

### Table 1

Selected geometric parameters (Å, °).

| Sn1-C101      | 2.098 (6)  | Sn1-O2 <sup>i</sup> | 2.679 (4)   |
|---------------|------------|---------------------|-------------|
| Sn1-C102      | 2.100 (5)  | Sn1-O3 <sup>i</sup> | 2.981 (4)   |
| Sn1-O1        | 2.158 (3)  | Sn1-N1              | 2.251 (4)   |
| Sn1-O2        | 2.206 (4)  |                     |             |
| C101-Sn1-C102 | 156.9 (3)  | O1-Sn1-O2           | 157.21 (15) |
| C101-Sn1-O1   | 90.71 (19) | C101-Sn1-N1         | 101.2 (2)   |
| C102-Sn1-O1   | 90.65 (18) | C102-Sn1-N1         | 101.8 (2)   |
| C101-Sn1-O2   | 90.0 (2)   | O1-Sn1-N1           | 80.70 (14)  |
| C102-Sn1-O2   | 97.5 (2)   | O2-Sn1-N1           | 76.81 (14)  |

Symmetry code: (i) -x, 2 - y, 2 - z.

H-atom positions were calculated and constrained to the idealized geometries used by SHELXL97 (Sheldrick, 1997), with C-H =0.93 Å for  $Csp^2$  H atoms and 0.96 Å for methyl H atoms. The H-atom displacement parameters were treated as riding, with  $U_{iso}(H) =$  $1.2U_{eq}(C_{Ph})$  or  $1.5U_{eq}(C_{Me})$ .

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL.

The authors would like to thank the DST, UGC and CSIR (New Delhi) for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1098). Services for accessing these data are described at the back of the journal.

#### References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.
- Dey, D. K., Saha, M. K., Das, M. K., Bhartiya, N., Bansal, R. K., Rosair, G. & Mitra, S. (1999). Polyhedron, 18, 2687-2696.
- Dey, D. K., Saha, M. K., Gielen, M., Kemmer, M., Biesemans, M., Willem, R., Gramlich, V. & Mitra, S. (1999). J. Organomet. Chem. 590, 88-92.

Gielen, M., Dalil, H., Ghys, L., Boduszek, B., Tiekink, E. R. T., Martins, J. C., Biesemans, M. & Willem, R. (1998). Organometallics, 17, 4259-4262

Huber, F., Preut, H., Hoffmann, E. & Gielen, M. (1989). Acta Cryst. C45, 51-54.

- Khoo, L. E., Xu, Y., Goh, N. K., Chia, L. S. & Koh, L. L. (1997). Polyhedron, 16. 573-576.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.
- Preut, H., Huber, F., Barbieri, R. & Bertazzi, N. (1976). Z. Anorg. Allg. Chem. 423 75-82
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany,
- Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, F. E., Hynes, R. C., Ang, T. T., Khoo, L. E. & Eng, G. (1992). Can. J. Chem. 70, 1114-1120.